Previous Article 🔗 smart pointer unique_ptr Introduced unique_ptr, and the main difference between shared_ptr and unique_ptr is that multiple shared_ptr can manage the same object, which is realized through copy constructor and reference counting mechanism.
shared_ptr(const std::__1::shared_ptr<_Tp> &); shared_ptr(std::__1::shared_ptr<_Tp> &&); std::__1::shared_ptr<_Tp> & operator=(const std::__1::shared_ptr<_Tp> &); std::__1::shared_ptr<_Tp> & operator=(std::__1::shared_ptr<_Tp> &&);
It can be seen that the constructor not only supports rvalue parameter passing, but also supports lvalue. As for the reference count, there should be a data member to record the number of references. First look at the definition of shared_ptr:
template<class _Tp> class _LIBCPP_SHARED_PTR_TRIVIAL_ABI _LIBCPP_TEMPLATE_VIS shared_ptr { ... private: _Tp* __ptr_; __shared_weak_count* __cntrl_; ... }
There are only two data members, of which __ptr_ seems to point to a native pointer, and the other one has a high probability of saving information related to reference counting, but it is of type __shared_weak_count, which is actually a class:
class _LIBCPP_TYPE_VIS __shared_weak_count : private __shared_count { long __shared_weak_owners_; public: _LIBCPP_INLINE_VISIBILITY explicit __shared_weak_count(long __refs = 0) _NOEXCEPT : __shared_count(__refs), __shared_weak_owners_(__refs) {} ... }
It has only one data member __shared_weak_owners_, but it can be seen from the name that it corresponds to the smart pointer weak_ptr, but it also privately inherits the class __shared_count:
class _LIBCPP_TYPE_VIS __shared_count { ... protected: long __shared_owners_; ... public: _LIBCPP_INLINE_VISIBILITY explicit __shared_count(long __refs = 0) _NOEXCEPT : __shared_owners_(__refs) {} ... }
Its data member __shared_owners_ is used for the record reference count we are looking for, but its initial value is 0, and when the use_count() method is called, it returns 1, and see the call chain:
// shared_ptr long use_count() const _NOEXCEPT { return __cntrl_ ? __cntrl_->use_count() : 0; } // __shared_weak_count long use_count() const _NOEXCEPT { return __shared_count::use_count(); } // __shared_count long use_count() const _NOEXCEPT { return __libcpp_relaxed_load(&__shared_owners_) + 1; }
At this point, it is clear that the returned reference number is processed by adding 1 in the program. As for why this is done, I have not thought of any reasonable explanation so far. If anyone knows it, please give me some pointers!
So how does that affect reference counting? For example, the following code:
{ shared_ptr<A> s (new A(5)); cout << "s count:" << s.use_count() << endl; shared_ptr<A> t(s); cout << "t count:" << t.use_count() << endl; s.reset(); cout << "t count:" << t.use_count() << endl; }
The output after running is as follows:
s count:1 t count:2 t count:1
Here we have to look at the implementation of the copy constructor of shared_ptr:
// shared_ptr template<class _Tp> inline shared_ptr<_Tp>::shared_ptr(const shared_ptr& __r) _NOEXCEPT : __ptr_(__r.__ptr_), __cntrl_(__r.__cntrl_) { if (__cntrl_) __cntrl_->__add_shared(); } // __shared_weak_count void __add_shared() _NOEXCEPT { __shared_count::__add_shared(); } // __shared_count void __add_shared() _NOEXCEPT { __libcpp_atomic_refcount_increment(__shared_owners_); }
Follow along the way and finally call the __add_shared() method in the class __shared_count. Note that the __libcpp_atomic_refcount_increment() method is used here to ensure the atomicity of the count. Let's see how reset() releases and decrements the current count by 1.
template<class _Tp> inline void shared_ptr<_Tp>::reset() _NOEXCEPT { shared_ptr().swap(*this); }
First, the constructor shared_ptr() is called to generate an anonymous empty shared_ptr pointer, and then the swap() method is called to exchange with the current object, which is the smart pointer s.
swap(_Tp& __x, _Tp& __y) _NOEXCEPT_(is_nothrow_move_constructible<_Tp>::value && is_nothrow_move_assignable<_Tp>::value) { _Tp __t(_VSTD::move(__x)); __x = _VSTD::move(__y); __y = _VSTD::move(__t); }
The exchange here is not a simple assignment exchange, but the introduction of move semantics, so that the anonymous shared_ptr pointer just generated becomes the smart pointer s to be released. When the reset() method code block is exited after swapping, the destructor is automatically executed:
// shared_ptr template<class _Tp> shared_ptr<_Tp>::~shared_ptr() { if (__cntrl_) __cntrl_->__release_shared(); } // __shared_weak_count void __release_shared() _NOEXCEPT { if (__shared_count::__release_shared()) __release_weak(); } // __shared_count bool __release_shared() _NOEXCEPT { if (__libcpp_atomic_refcount_decrement(__shared_owners_) == -1) { __on_zero_shared(); return true; } return false; }
In the end, the __release_shared() method in the class __shared_count is called to atomically decrement it by 1, but there is an additional judgment compared to adding 1, that is, when there is no shared_ptr pointer pointing to the object, the __on_zero_shared() method must be called.
// __shared_ptr_pointer template <class _Tp, class _Dp, class _Alloc> void __shared_ptr_pointer<_Tp, _Dp, _Alloc>::__on_zero_shared() _NOEXCEPT { __data_.first().second()(__data_.first().first()); __data_.first().second().~_Dp(); }
This method is a member function of the class __shared_ptr_pointer, which seems a bit sudden, but if you look at how the constructor of shared_ptr is implemented, you will know.
template<class _Tp> template<class _Yp> shared_ptr<_Tp>::shared_ptr(_Yp* __p, typename enable_if<__compatible_with<_Yp, element_type>::value, __nat>::type) : __ptr_(__p) { unique_ptr<_Yp> __hold(__p); typedef typename __shared_ptr_default_allocator<_Yp>::type _AllocT; typedef __shared_ptr_pointer<_Yp*, __shared_ptr_default_delete<_Tp, _Yp>, _AllocT > _CntrlBlk; __cntrl_ = new _CntrlBlk(__p, __shared_ptr_default_delete<_Tp, _Yp>(), _AllocT()); __hold.release(); __enable_weak_this(__p, __p); }
__cntrl_ is actually a __shared_ptr_pointer class object, and this class inherits from __shared_weak_count:
template <class _Tp, class _Dp, class _Alloc> class __shared_ptr_pointer : public __shared_weak_count { __compressed_pair<__compressed_pair<_Tp, _Dp>, _Alloc> __data_; public: _LIBCPP_INLINE_VISIBILITY __shared_ptr_pointer(_Tp __p, _Dp __d, _Alloc __a) : __data_(__compressed_pair<_Tp, _Dp>(__p, _VSTD::move(__d)), _VSTD::move(__a)) {} ... };
But the class __shared_weak_count is an abstract class because it has a pure virtual member function:
private: virtual void __on_zero_shared_weak() _NOEXCEPT = 0;
So actually the class __shared_ptr_pointer manages the allocation and destruction of shared_ptr memory.
So far, the reference counting part of shared_ptr is almost introduced. Throughout the article, I feel that it is more of a description. I can only say that I know a general idea, but I still lack some understanding of my own. I hope that I will have the opportunity to understand this in depth in the future.