STM32 serial communication

Table of contents

1. The purpose of the experiment

Second, the register realizes lighting

1. Project creation

2. Write code

3. Burn and compile

4. Observe the output waveform of the GPIO port

3. HAL library lights up LED running lights

1. Install the HAL library

​Edit 2. Create a project

3. Configuration work

(1) Clock configuration

(2) GPIO configuration

(3) Configure the debugging interface

(4) Generate project

4. USART serial communication to send Hello world

1. USART function introduction

2. Code implementation

5. Burning operation

1. Instrument preparation

2 Instrument connection

3 Burn

6. Observe the output waveform

1. Set the emulation mode

2. Use a logic analyzer

7. References

1. The purpose of the experiment

Install stm32CubeMX, cooperate with Keil, and try to use the register address method (assembly or C, no limit) and HAL library to complete the following tasks:

1. Redo the last LED running light job, that is, use the GPIO port to complete the periodic flashing of 3 LED traffic lights.

2. Complete a STM32 USART serial communication program (the query method is sufficient, and the interrupt method is not required for the time being), requiring:

(1) Set the baud rate to 115200, 1 stop bit, no parity bit;

(2) The STM32 system continuously sends "hello windows!" to the host computer (win10). win10 uses the "serial port assistant" tool to receive.

In the absence of an oscilloscope, Keil's software simulation logic analyzer function can be used to observe the timing waveform of the pin, which is more convenient for dynamic tracking and debugging and locating code failure points. Please use this function to observe the output waveforms of the 3 GPIO ports in question 1 and the serial output waveforms in question 2, and analyze whether the timing status is correct or not, and what is the actual high-low level transition period (LED blinking period).

 

Second, the register realizes lighting

1. Project creation

Basically the same as the last experiment

Build and configure the Keil embedded development environment to complete the writing of a STM32-based assembler - Programmer Sought

Note that when this interface appears

edit

Just close this window

The selection of the chip needs to be replaced with STM32F103C8

2. Write code

Then add the .c program and write the following code

//--------------APB2???????------------------------
#define RCC_AP2ENR	*((unsigned volatile int*)0x40021018)
	//----------------GPIOA????? ------------------------
#define GPIOA_CRL	*((unsigned volatile int*)0x40010800)
#define	GPIOA_ORD	*((unsigned volatile int*)0x4001080C)
//----------------GPIOB????? ------------------------
#define GPIOB_CRH	*((unsigned volatile int*)0x40010C04)
#define	GPIOB_ORD	*((unsigned volatile int*)0x40010C0C)
//----------------GPIOC????? ------------------------
#define GPIOC_CRH	*((unsigned volatile int*)0x40011004)
#define	GPIOC_ORD	*((unsigned volatile int*)0x4001100C)
//-------------------???????-----------------------
void  Delay_wxc( volatile  unsigned  int  t)
{
     unsigned  int  i;
     while(t--)
         for (i=0;i<800;i++);
}
//------------------------???--------------------------
int main()
{
	int j=100;
	RCC_AP2ENR|=1<<2;			//APB2-GPIOA??????
	RCC_AP2ENR|=1<<3;			//APB2-GPIOB??????	
	RCC_AP2ENR|=1<<4;			//APB2-GPIOC??????
	//????????? RCC_APB2ENR|=1<<3|1<<4;
	GPIOA_CRL&=0x0FFFFFFF;		//??? ??	
	GPIOA_CRL|=0x20000000;		//PA7????
	GPIOA_ORD|=1<<7;			//???????
	
	GPIOB_CRH&=0xFFFFFF0F;		//??? ??	
	GPIOB_CRH|=0x00000020;		//PB9????
	GPIOB_ORD|=1<<9;			//???????
	
	GPIOC_CRH&=0x0FFFFFFF;		//??? ??
	GPIOC_CRH|=0x30000000;   	//PC15????
	GPIOC_ORD|=0x1<<15;			//???????	
	while(j)
	{	
		GPIOA_ORD=0x0<<0;		//PB0???	
		Delay_wxc(1000000);
		GPIOA_ORD=0x1<<0;		//PB0???
		Delay_wxc(1000000);
		
		GPIOB_ORD=0x0<<9;		//PB9???	
		Delay_wxc(1000000);
		GPIOB_ORD=0x1<<9;		//PB9???
		Delay_wxc(1000000);
		
		GPIOC_ORD=0x0<<15;		//PC15???	
		Delay_wxc(1000000);
		GPIOC_ORD=0x1<<15;		//PC15???
		Delay_wxc(1000000);
	}
}

Note that in the Options switch to the Output interface

Check Generate hex file

Add driver files

[

edit

Copy it to the project directory

3. Burn and compile

Open mcuisp and upload the hex file generated in the project

Click to start programming

edit

4. Observe the output waveform of the GPIO port

The light of the pin is low level, the light of high level is off, and the high-low level conversion cycle (LED flashing cycle) is about 1.12s.

3. HAL library lights up LED running lights

1. Install the HAL library

After installing SMT32CubeMX, you also need to install a firmware library, because the chip I use is the STM32F103 series, so I choose the STM32F1 version for installation. After installation, the environment is set up.

2. Create a project

Click New Project to create a project

Select this, then select the chip and click Start Project

3. Configuration work

(1) Clock configuration

First select RCC in the system core, then set HSE (external high-speed clock) to Crystal/Ceramic Resonator (crystal/ceramic resonator)

Then, click Clock Configuration to enter the system clock tree settings. Since the highest clock of STM32 is 72MHz, you can set it as shown in the figure.

(2) GPIO configuration

First select GPIO in the system core, and then select the pins. The GPIO Output pins I selected are A1, B1, and C15. The default output mode is push-pull output, so no changes are required.

(3) Configure the debugging interface

Select SYS in System Core, select Debug as required, and select Serial Wire to complete the configuration.

Next, observe the clock architecture. The clock of the APB2 bus is controlled by hse. At the same time, the right side of PLLCLK must be selected on this interface.

Set hse there to Crystal/Ceramic Resonator

A total of three output s are selected, which are PA4, PB9, and PC15:

(4) Generate project

After the final completion, select the folder and project name, click GENERATE CODE to generate the project, and the generated program is in the project. Select to generate the initialization .c/.h file, then click generate code, select open project, and then go to KEIL53 Add code

Open the main.c file and slip down the part of the main function:

HAL_GPIO_WritePin(GPIOA,GPIO_PIN_1,GPIO_PIN_RESET);
HAL_Delay(500);
HAL_GPIO_WritePin(GPIOA,GPIO_PIN_1,GPIO_PIN_SET);
HAL_Delay(500);
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_RESET);
HAL_Delay(500);
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_SET);
HAL_Delay(500);
HAL_GPIO_WritePin(GPIOC,GPIO_PIN_15,GPIO_PIN_RESET);
HAL_Delay(500);
HAL_GPIO_WritePin(GPIOC,GPIO_PIN_15,GPIO_PIN_SET);
HAL_Delay(500);

4. USART serial communication to send Hello world

1. USART function introduction

USART (Universal Synchronous/Asynchronous Receiver/Transmitter) is a full-duplex universal synchronous and asynchronous serial transceiver module. This interface is a highly flexible serial communication device. The USART transceiver module is generally divided into three parts: clock generator, data transmitter and receiver. Control registers are shared by all modules.

2. Code implementation

Create a project with keli and add assembly code

Note that there is no need to check here because of assembly language.

Add assembly file (.s)

add code

;RCC register address map             
RCC_BASE            EQU    0x40021000 
RCC_CR              EQU    (RCC_BASE + 0x00) 
RCC_CFGR            EQU    (RCC_BASE + 0x04) 
RCC_CIR             EQU    (RCC_BASE + 0x08) 
RCC_APB2RSTR        EQU    (RCC_BASE + 0x0C) 
RCC_APB1RSTR        EQU    (RCC_BASE + 0x10) 
RCC_AHBENR          EQU    (RCC_BASE + 0x14) 
RCC_APB2ENR         EQU    (RCC_BASE + 0x18) 
RCC_APB1ENR         EQU    (RCC_BASE + 0x1C) 
RCC_BDCR            EQU    (RCC_BASE + 0x20) 
RCC_CSR             EQU    (RCC_BASE + 0x24) 
                              
;AFIO register address map            
AFIO_BASE           EQU    0x40010000 
AFIO_EVCR           EQU    (AFIO_BASE + 0x00) 
AFIO_MAPR           EQU    (AFIO_BASE + 0x04) 
AFIO_EXTICR1        EQU    (AFIO_BASE + 0x08) 
AFIO_EXTICR2        EQU    (AFIO_BASE + 0x0C) 
AFIO_EXTICR3        EQU    (AFIO_BASE + 0x10) 
AFIO_EXTICR4        EQU    (AFIO_BASE + 0x14) 
                                                           
;GPIOA register address map              
GPIOA_BASE          EQU    0x40010800 
GPIOA_CRL           EQU    (GPIOA_BASE + 0x00) 
GPIOA_CRH           EQU    (GPIOA_BASE + 0x04) 
GPIOA_IDR           EQU    (GPIOA_BASE + 0x08) 
GPIOA_ODR           EQU    (GPIOA_BASE + 0x0C) 
GPIOA_BSRR          EQU    (GPIOA_BASE + 0x10) 
GPIOA_BRR           EQU    (GPIOA_BASE + 0x14) 
GPIOA_LCKR          EQU    (GPIOA_BASE + 0x18) 
                                                       
;GPIO C mouth control                   
GPIOC_BASE          EQU    0x40011000 
GPIOC_CRL           EQU    (GPIOC_BASE + 0x00) 
GPIOC_CRH           EQU    (GPIOC_BASE + 0x04) 
GPIOC_IDR           EQU    (GPIOC_BASE + 0x08) 
GPIOC_ODR           EQU    (GPIOC_BASE + 0x0C) 
GPIOC_BSRR          EQU    (GPIOC_BASE + 0x10) 
GPIOC_BRR           EQU    (GPIOC_BASE + 0x14) 
GPIOC_LCKR          EQU    (GPIOC_BASE + 0x18) 
                                                           
;Serial 1 control                       
USART1_BASE         EQU    0x40013800 
USART1_SR           EQU    (USART1_BASE + 0x00) 
USART1_DR           EQU    (USART1_BASE + 0x04) 
USART1_BRR          EQU    (USART1_BASE + 0x08) 
USART1_CR1          EQU    (USART1_BASE + 0x0c) 
USART1_CR2          EQU    (USART1_BASE + 0x10) 
USART1_CR3          EQU    (USART1_BASE + 0x14) 
USART1_GTPR         EQU    (USART1_BASE + 0x18) 
                            
;NVIC register address                
NVIC_BASE           EQU    0xE000E000 
NVIC_SETEN          EQU    (NVIC_BASE + 0x0010)     
;SETENA start address of register array 
NVIC_IRQPRI         EQU    (NVIC_BASE + 0x0400)     
;start address of the interrupt priority register array 
NVIC_VECTTBL        EQU    (NVIC_BASE + 0x0D08)     
;address of vector table offset register     
NVIC_AIRCR          EQU    (NVIC_BASE + 0x0D0C)     
;Application interrupt and reset control register address                                                
SETENA0             EQU    0xE000E100 
SETENA1             EQU    0xE000E104 
                                                   
;SysTick register address            
SysTick_BASE        EQU    0xE000E010 
SYSTICKCSR          EQU    (SysTick_BASE + 0x00) 
SYSTICKRVR          EQU    (SysTick_BASE + 0x04) 
                              
;FLASH Buffer register address map     
FLASH_ACR           EQU    0x40022000 
                             
;SCB_BASE           EQU    (SCS_BASE + 0x0D00) 
                             
MSP_TOP             EQU    0x20005000               
;Main stack start value                
PSP_TOP             EQU    0x20004E00               
;Process stack start value             
                            
BitAlias_BASE       EQU    0x22000000               
;Bit-band alias area start address         
Flag1               EQU    0x20000200 
b_flas              EQU    (BitAlias_BASE + (0x200*32) + (0*4))               
;bit address 
b_05s               EQU    (BitAlias_BASE + (0x200*32) + (1*4))               
;bit address 
DlyI                EQU    0x20000204 
DlyJ                EQU    0x20000208 
DlyK                EQU    0x2000020C 
SysTim              EQU    0x20000210 

;constant definition 
Bit0                EQU    0x00000001 
Bit1                EQU    0x00000002 
Bit2                EQU    0x00000004 
Bit3                EQU    0x00000008 
Bit4                EQU    0x00000010 
Bit5                EQU    0x00000020 
Bit6                EQU    0x00000040 
Bit7                EQU    0x00000080 
Bit8                EQU    0x00000100 
Bit9                EQU    0x00000200 
Bit10               EQU    0x00000400 
Bit11               EQU    0x00000800 
Bit12               EQU    0x00001000 
Bit13               EQU    0x00002000 
Bit14               EQU    0x00004000 
Bit15               EQU    0x00008000 
Bit16               EQU    0x00010000 
Bit17               EQU    0x00020000 
Bit18               EQU    0x00040000 
Bit19               EQU    0x00080000 
Bit20               EQU    0x00100000 
Bit21               EQU    0x00200000 
Bit22               EQU    0x00400000 
Bit23               EQU    0x00800000 
Bit24               EQU    0x01000000 
Bit25               EQU    0x02000000 
Bit26               EQU    0x04000000 
Bit27               EQU    0x08000000 
Bit28               EQU    0x10000000 
Bit29               EQU    0x20000000 
Bit30               EQU    0x40000000 
Bit31               EQU    0x80000000 


;vector table 
    AREA RESET, DATA, READONLY 
    DCD    MSP_TOP            ;Initialize the main stack 
    DCD    Start              ;reset vector 
    DCD    NMI_Handler        ;NMI Handler 
    DCD    HardFault_Handler  ;Hard Fault Handler 
    DCD    0                   
    DCD    0 
    DCD    0 
    DCD    0 
    DCD    0 
    DCD    0 
    DCD    0 
    DCD    0 
    DCD    0 
    DCD    0 
    DCD    0 
    DCD    SysTick_Handler    ;SysTick Handler 
    SPACE  20                 ;20 bytes of reserved space 
                 
;code snippet 
    AREA |.text|, CODE, READONLY 
    ;main program starts 
    ENTRY                            
    ;Instructs the program to execute from here 
Start 
    ;Clock System Settings 
    ldr    r0, =RCC_CR 
    ldr    r1, [r0] 
    orr    r1, #Bit16 
    str    r1, [r0] 
    ;Enable external crystal oscillator  
    ;start external 8 M crystal oscillator 
                                            
ClkOk           
    ldr    r1, [r0] 
    ands   r1, #Bit17 
    beq    ClkOk 
    ;Wait for the external crystal to be ready 
    ldr    r1,[r0] 
    orr    r1,#Bit17 
    str    r1,[r0] 
    ;FLASH buffer 
    ldr    r0, =FLASH_ACR 
    mov    r1, #0x00000032 
    str    r1, [r0] 
            
    ;set up PLL The phase-locked loop multiplier is 7,HSE input is not divided 
    ldr    r0, =RCC_CFGR 
    ldr    r1, [r0] 
    orr    r1, #(Bit18 :OR: Bit19 :OR: Bit20 :OR: Bit16 :OR: Bit14) 
    orr    r1, #Bit10 
    str    r1, [r0] 
    ;start up PLL phase locked loop 
    ldr    r0, =RCC_CR 
    ldr    r1, [r0] 
    orr    r1, #Bit24 
    str    r1, [r0] 
PllOk 
    ldr    r1, [r0] 
    ands   r1, #Bit25 
    beq    PllOk 
    ;choose PLL clock as system clock 
    ldr    r0, =RCC_CFGR 
    ldr    r1, [r0] 
    orr    r1, #(Bit18 :OR: Bit19 :OR: Bit20 :OR: Bit16 :OR: Bit14) 
    orr    r1, #Bit10 
    orr    r1, #Bit1 
    str    r1, [r0] 
    ;other RCC Related settings 
    ldr    r0, =RCC_APB2ENR 
    mov    r1, #(Bit14 :OR: Bit4 :OR: Bit2) 
    str    r1, [r0]      


    ;IO port settings 
    ldr    r0, =GPIOC_CRL 
    ldr    r1, [r0] 
    orr    r1, #(Bit28 :OR: Bit29)          
    ;PC.7 output mode,max speed 50 MHz  
    and    r1, #(~Bit30 & ~Bit31)   
    ;PC.7 Universal push-pull output mode 
    str    r1, [r0] 
            
    ;PA9 Serial port 0 transmitter pin 
    ldr    r0, =GPIOA_CRH 
    ldr    r1, [r0] 
    orr    r1, #(Bit4 :OR: Bit5)          
    ;PA.9 output mode,max speed 50 MHz  
    orr    r1, #Bit7 
    and    r1, #~Bit6 
    ;10: Alternate function push-pull output mode 
    str    r1, [r0]    


    ldr    r0, =USART1_BRR   
    mov    r1, #0x271 
    str    r1, [r0] 
    ;Configure the baud rate-> 115200 
                   
    ldr    r0, =USART1_CR1   
    mov    r1, #0x200c 
    str    r1, [r0] 
    ;USART The module is always enabled Send and receive enable 
    ;71 02 00 00   2c 20 00 00 
             
    ;AFIO parameter settings             
    ;Systick parameter settings 
    ldr    r0, =SYSTICKRVR           
    ;Systick Install the initial value 
    mov    r1, #9000 
    str    r1, [r0] 
    ldr    r0, =SYSTICKCSR           
    ;set up,start up Systick 
    mov    r1, #0x03 
    str    r1, [r0] 
            
    ;NVIC                     
    ;ldr   r0, =SETENA0 
    ;mov   r1, 0x00800000 
    ;str   r1, [r0] 
    ;ldr   r0, =SETENA1 
    ;mov   r1, #0x00000100 
    ;str   r1, [r0] 
              
    ;Switch to user-level line program mode 
    ldr    r0, =PSP_TOP                   
    ;Initialize thread stack 
    msr    psp, r0 
    mov    r0, #3 
    msr    control, r0 
              
    ;initialization SRAM register 
    mov    r1, #0 
    ldr    r0, =Flag1 
    str    r1, [r0] 
    ldr    r0, =DlyI 
    str    r1, [r0] 
    ldr    r0, =DlyJ 
    str    r1, [r0] 
    ldr    r0, =DlyK 
    str    r1, [r0] 
    ldr    r0, =SysTim 
    str    r1, [r0] 
               
;main loop            
main            
    ldr    r0, =Flag1 
    ldr    r1, [r0] 
    tst    r1, #Bit1                 
    ;SysTick yields 0.5s,Position bit 1 
    beq    main                  ;0.5s flag not yet set       
     
    ;0.5s flag is set 
    ldr    r0, =b_05s                
    ;bit-band operation clears 0.5s logo 
    mov    r1, #0 
    str    r1, [r0] 
    bl     LedFlas 


    mov    r0, #'H' 
    bl     send_a_char
	
	mov    r0, #'e' 
    bl     send_a_char
	
	mov    r0, #'l' 
    bl     send_a_char
	
	mov    r0, #'l' 
    bl     send_a_char
	
	mov    r0, #'o' 
    bl     send_a_char
	
	mov    r0, #' ' 
    bl     send_a_char
	
	mov    r0, #'w' 
    bl     send_a_char
	
	mov    r0, #'i' 
    bl     send_a_char
	
	mov    r0, #'n' 
    bl     send_a_char
	
	mov    r0, #'d' 
    bl     send_a_char
	
	mov    r0, #'o' 
    bl     send_a_char
	
	mov    r0, #'w' 
    bl     send_a_char
	
	mov    r0, #'s' 
    bl     send_a_char
	
	mov    r0, #'!' 
    bl     send_a_char
	
	mov    r0, #'\n' 
    bl     send_a_char
	
	b      main
            
              
;Subroutine Serial port 1 sends a character 
send_a_char 
    push   {r0 - r3} 
    ldr    r2, =USART1_DR   
    str    r0, [r2] 
b1 
    ldr    r2, =USART1_SR  
    ldr    r2, [r2] 
    tst    r2, #0x40 
    beq    b1 
    ;send completed(Transmission complete)wait 
    pop    {r0 - r3} 
    bx     lr 
                
;subroutine led flicker 
LedFlas      
    push   {r0 - r3} 
    ldr    r0, =Flag1 
    ldr    r1, [r0] 
    tst    r1, #Bit0 
    ;bit0 flashing flag 
    beq    ONLED        ;open at 0 led lamp 
    ;1 off led lamp 
    ldr    r0, =b_flas 
    mov    r1, #0 
    str    r1, [r0] 
    ;Blinking flag position is 0,The next state is to turn on the light 
    ;PC.7 output 0 
    ldr    r0, =GPIOC_BRR 
    ldr    r1, [r0] 
    orr    r1, #Bit7 
    str    r1, [r0] 
    b      LedEx 
ONLED       
    ;open at 0 led lamp 
    ldr    r0, =b_flas 
    mov    r1, #1 
    str    r1, [r0] 
    ;Blinking flag position is 1,The next state is to turn off the lights 
    ;PC.7 output 1 
    ldr    r0, =GPIOC_BSRR 
    ldr    r1, [r0] 
    orr    r1, #Bit7 
    str    r1, [r0] 
LedEx        
    pop    {r0 - r3} 
    bx     lr 
                                
;exception program 
NMI_Handler 
    bx     lr 


HardFault_Handler 
    bx     lr 
              
SysTick_Handler 
    ldr    r0, =SysTim 
    ldr    r1, [r0] 
    add    r1, #1 
    str    r1, [r0] 
    cmp    r1, #500 
    bcc    TickExit 
    mov    r1, #0 
    str    r1, [r0] 
    ldr    r0, =b_05s  
    ;Greater than or equal to 500 times Clear the clock tick counter Set 0.5s flag bit 
    ;bit band operation set to 1 
    mov    r1, #1 
    str    r1, [r0] 
TickExit    
    bx     lr 
                                                                           
    ALIGN            
    ;by using zero or empty instructions NOP filling,to align the current position with a specified boundary 
    END

to compile

5. Burning operation

1. Instrument preparation

1. One piece of stm32 core board 103f
2, usb to serial port
3, a breadboard, a number of wires

2 Instrument connection

GND-G
3V3-3.3
RXD-A10
TXD-A9

3 Burn

 

6. Observe the output waveform

In the absence of an oscilloscope, Keil's software simulation logic analyzer function can be used to observe the timing waveform of the pin, which is more convenient for dynamic tracking and debugging and locating code failure points. Please use this function to observe the output waveforms of the three GPIO ports in question 1, and analyze whether the timing states reflected by the waveforms are correct or not, and what is the actual high-low level transition period (LED blinking period).

1. Set the emulation mode

When using the simulation mode, you need to set the Debug mode. The following figure shows the Debug setting mode.

2. Use a logic analyzer

 

Be sure to set Display Type to BIt!

Waveform

 

 

 

7. References

usart serial communication of STM32 - Programmer Sought

Use register & HAL library to complete LED running light program_weixin_45203491's blog - CSDN blog

stm32CubeMX cooperates with keil to complete the running water lamp and use the logic analyzer to observe the timing waveform - Programmer Sought

 

Tags: Embedded system Single-Chip Microcomputer stm32

Posted by Dvorak on Tue, 25 Oct 2022 07:03:00 +0300